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This paper describes applications of the fully implicit procedure for computing flow of two immiscible
fluids. Six problems in two and three dimensions are solved to highlight effects of grid size, pressure
smoothing, TVD convection scheme and geometric and fluid dynamic evaluations of surface tension force.
Free surface and cavity flows are considered in which effect of sloshing, interface merger and splitting as
well as splashing are included. Wherever possible, present solutions are compared with results of previ-
ous experiments and/or numerical computations. Computational details such as grid size, time step,
under-relaxation factors, mass/volume conservation are reported.
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1. Introduction putations are performed on a Xeon (3.2 GHz) dual processor work
The fully implicit numerical procedure for prediction of flows
with interfaces has been described in Ref. [1]. This procedure has
employed novel means to avoid problems of zig-zag pressure pre-
dictions on collocated grids, loss/gain of mass/volume encountered
in some of the previous methods and, interface smearing associ-
ated with simple upwind difference scheme in the advection equa-
tion. Further, evaluation of the surface tension force from mean
pressure difference across the interface has been newly introduced.
The purpose of the present paper is to demonstrate validity of
these theoretically derived procedures against following six
problems:

(1) Rayleigh–Taylor instability (2D).
(2) Collapse of a water column (2D).
(3) Sloshing in a tank (2D).
(4) Splashing of a water drop on a water surface (2D).
(5) Bursting of a rising bubble through liquid surface (3D).
(6) Merger of two rising bubbles in a tank of liquid (3D).

Experimental data and/or numerical computations for all prob-
lems are available in the literature. Surface tension force is evalu-
ated in 3D problems but ignored in 2D problems. Complete
computational details are given in the text of this paper. All com-
Elsevier Ltd.
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station. 2D problems are solved in single precision and 3D prob-
lems are solved in double precision by adapting Computer Code
given in Date [13]. All figures in this paper are plotted using
TECPLOT.

2. Results and discussion

In all problems presented and discussed suffix a refers to hea-
vier fluid and suffix b to the lighter one. Also, pressure and velocity
are set to zero by way of initial conditions in all problems.

2.1. Rayleigh–Taylor instability

We consider the problem as specified by Rudman [2] (see
Fig. 1a). Heavier fluid with qa ¼ 1:2 at the top is separated from
the lighter fluid qb ¼ 1:0 in a two-dimensional cavity 2L� 3L.
The interface is located at x2 ¼ 2L from the bottom. The Froude
number Fr ¼ Uref =ðg LÞ0:5 ¼ 0:5. In order that the Reynolds number
Re ¼ ðUref q L=lÞa;b ¼ 500 in both fluids is the same, the fluid vis-
cosities are taken as la ¼ 0:0037582 and lb ¼ 0:00313182. Fur-
ther, r ¼ 0.

Exploiting symmetry, the domain of computation is taken as
shown in Fig. 1b with symmetry plane at x1 ¼ 0. At t = 0, the inter-
face is perturbed according to ðx2=LÞ ¼ 2þ 0:02 cos ð2px1=LÞ. The
consequence of this physical displacement of the interface is
reflected in the initial F distribution in control volumes on either
side of the interface. Taking g = 9.81 and L = 1, the computations
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Nomenclature

D diameter
F volume fraction
Fr Froude number
Fst surface tension force
g gravity acceleration
L and H domain length and height
Re Reynolds number
t time
ui velocity in xi; i ¼ 1;2;3 direction
V volume
~V total velocity vector
We Weber Number

Greek symbols
l dynamic viscosity
q density
r surface tension coefficient

Suffixes
a refers to heavier fluid
b refers to lighter fluid
n normal to the interface
xi refers to xi; i ¼ 1;2;3 directions

3L

FLUID  a

WALL

WALL

T
R

Y
  P

L
A

N
E

 

g

3226 K. Nandi, A.W. Date / International Journal of Heat and Mass Transfer 52 (2009) 3225–3234
are performed with fixed time step Ds ¼ 0:001 where s ¼ 0:5�
t � ðg=LÞ0:5 and with 20� 60; 40� 120 and 80� 240 uniform con-
trol volumes in x1 and x2 directions, respectively. At the first time
step, iterations in excess of 500 were required to achieve conver-
gence. After 20 time steps, the number of iterations required was
less than 12 per time step. The maximum error in volume balance
was found to be 1.03% on the coarsest grid but was reduced to
0.46% on the finest grid.1 Computed contours of F = 0.5 are plotted
in Fig. 2 for s ¼ 4; 6 and 8 on three grids. It is seen that as the grid
is refined, finer structures in the flow are increasingly resolved. The
present results bear similarity with those computed by Rudman [2]
using FCT-VOF discretization of the advection equation.

Fig. 3 shows comparison of F-distributions ð0:025 < F < 0:975Þ
obtained by TVD [15,16] and UDS schemes on 80� 240 grid. The
figure confirms that TVD predictions show much less smearing
than the UDS scheme. None-the-less, sharpness of interface predic-
tions is still less than satisfactory when the interface is inclined
with respect to the grid lines.2 These remarks also apply to several
other TVD schemes (see [7,17–21]).

Finally, Fig. 4 shows pressure contours and velocity vectors ob-
tained using TVD scheme. The velocity vectors confirm that the
distribution of volume fraction F (see Fig. 3) is governed by convec-
tion. At small time, a single (double in the full cavity) vortex is seen
in the heavier fluid which then breaks into two re-circulating
regions at s ¼ 6. At s ¼ 8, the vortex near the symmetry axis elon-
gates in the downward direction while the vortex in the top-right
corner becomes larger. Likewise, the pressure contours begin to
deviate from pure hydrostatic variations at small times as the hea-
vier fluid descends near the axis of symmetry. Closed loop contours
are seen at larger times surrounding vortex centers.

2.2. Collapse of a water column

Fig. 5 shows the configuration of the problem. The computa-
tional domain is 4 m� 2:2 m. Initially, water (fluid a) column
H = 2 m high and L = 1 m wide is kept at rest by means of a dam.
Fluid b is air. At t = 0, the dam breaks. It is of interest to predict
variations of vertical height Y(t) at x1 ¼ 0 and horizontal spread
1 The present calculations are performed using single precision. They demonstrate
higher volume errors than when double precision is used as in 3D computations
presented later in this paper.

2 Many authors test the efficacy of a TVD or any other higher order convection
scheme by considering a variety of problems in which velocity distributions are
prescribed. Then, only qm (or, F or level set) equation is relevant [1]. Also, the
predicted F-distributions are not compared with any experimental data obtained with
real fluids. As such, we regard such test cases as purely mathematical constructs
because pressure and viscosity are not permitted to influence the interface evolution.
It is for this reason, we believe, that Rudman [2] has, in effect, remarked that accurate
representations of convective fluxes in an isolated F-equation does not guarantee accurate
predictions when flow velocities are calculated from N–S equations.
X(t) at x2 ¼ 0 as functions of time following the break. Surface ten-
sion effects are not considered.

Computations are performed with 40� 22 uniform control vol-
umes (same as that used by Jun and Spalding [3]) in x1 and x2 direc-
tions, respectively. Taking g = 9.81 and L = 1, fixed time step
Ds ¼ 0:001 is used where s ¼ t � ð2� g=LÞ0:5. The density and vis-
cosity of the two fluids are taken as qa ¼ 998:1; qb ¼ 1:205;
la ¼ 0:00101 and lb ¼ 1:81� 10�5. The ratios of properties of fluid
a to fluid b are thus formidably high. In order to obtain good con-
vergence, it was found necessary to under-relax pressure correc-
tion equation in the initial stages of flow development. No-slip
condition for velocities and zero-flux condition for F-equation were
used as boundary conditions at all boundaries. Computations are
carried out till s ¼ 3. At this time, the maximum error in volume
balance was found to be 0.432%.

The time variations of X and Y are compared in Fig. 6 with
experimental data presented in Tables 2 and 6 of the paper by of
Martin and Moyce [5]. The comparison is reasonable not-with-
standing the experimental difficulties mentioned by Martin and
Moyce [5]. Fig. 7 shows the F = 0.5 contours at four different times.
These contours mimic those presented in Ref. [3] using the con-
served-scalar equation and explicit van Leer scheme [4].

2.3. Sloshing in a tank

Fig. 8 shows the problem specification. The tank is moved with
a horizontal displacement

x1 ðtÞ ¼ A fsin ð2p f 1 tÞ � sin ð2p f 2 tÞg
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Fig. 1. Rayleigh–Taylor instability: (a) problem specification (b) domain of
computation.



Fig. 2. Rayleigh–Taylor instability – 20� 60 (top), 40� 120 (middle), 80� 240 (bottom) – dark portions represent heavier fluid a.
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where A ¼ 7:5� 10�3; f 1 ¼ 1:598 Hz and f2 ¼ 1:307 Hz. Computa-
tions are performed with 60� 60 cells and time step Dt ¼ 0:001 s.
Fluid properties are same as in the previous problem and r ¼ 0.
On all boundaries, u1ðtÞ ¼ dx1=dt;u2 ¼ 0 was specified at each time
step. F-Equation was solved with zero-flux boundary condition.
Nearly 500 iterations per step are required to obtain convergence.
The pressure correction equation was under-relaxed in the first
100 time steps to procure convergence. At t = 2.004 s, the volume
error was 0.45%. In Fig. 9, the predicted interface profiles (lines)
are compared with experimental data (dots) as read from paper
by Andrillon and Alessandrini [6]. Again, the agreement between
experimental data and numerical results is reasonable. Fig. 10
shows dimensionless pressure p� ¼ ðp� pminÞ=ðpmax � pminÞ contours
and velocity vectors at different times. The velocity in the air greatly
exceeds that in the water. The fluid re-circulations due to interface
movement accord with the expectation and the pressure contours
are indeed smooth (see Date [14]). The pressure distributions en-
able evaluation of forces acting on tank walls.



Fig. 3. Comparison of UDS (top) and TVD (bottom) predictions.

8

0 0.5 1
0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

6

0 0.5 1

4

0 0.5 1

Fig. 4. Rayleigh–Taylor instability ð80� 240Þ – pressure contours and velocity vectors (scale: 1 cm = 1 m/s) with TVD scheme.
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2.4. Splashing of a water drop on a water surface

Consider a two-dimensional rectangular enclosure of 7 mm�
14 mm dimensions. The enclosure is filled with water to a height
of 8.75 mm. Initially a cylindrical water drop of radius rd ¼ 1:4 mm
is placed above the water surface in air at the center plane
x1 ¼ 3:5 mm and height x2 ¼ 10:55 mm. For t > 0, the drop falls un-
der the action of gravity ðg ¼ 9:81 m=s2Þ and splashes on the water
surface creating ripples and merges with the body of water. The fluid
properties are same as those in the dam-break problem.

Computations are performed with 64 � 128 grid without
exploiting symmetry. Fifty iterations per time step (10�5 s) are re-
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Fig. 5. Collapse of a water column – domain of computation.

Fig. 6. Variation of horizontal spread X and vertical height Y with time – solid line
(predictions), open circles (experimental data [5]).

Fig. 7. Interface locations at s ¼ 0:9; 1:4; 2:0 and 3.0. Collapse of a water column –
dark portions represent water.
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quired with p0 under-relaxed for obtaining convergence. Computa-
tions are continued up to t = 0.025 s and the interface profiles are
shown in Fig. 11. This problem has also been computed by Puckett
et al. [8] using VOF method with interface reconstruction at every
time step although the exact dimensions of the cavity are not men-
tioned in their paper. The present results are qualitatively in accord
with their predictions with maximum volume error 0.002%
although the air entrapment in water following the splash ob-
served by them is not obtained by us most probably due to coarse-
ness of the grid.

Fig. 12 shows the development of pressure and velocity in the
enclosure. It is interesting to note that as soon as the drop begins
to fall, upward flow is generated in air near the vertical walls
and which then recirculates near the water surface causing shear.
This induces motion in the water even when the drop is not in con-
tact with water. These motions cause development of pressure
variations that deviate from pure hydrostatic pressure variation.

2.5. Bursting of a bubble

Fig. 13 shows a three-dimensional box of dimensions
6� 6� 12 U which is filled with liquid up to 4 U height. A bubble



Fig. 9. Interface locations – sloshing in a tank.
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of diameter D = 2 U is introduced with its center at (3,3,2.8) at
t = 0. Due to buoyancy, the bubble rises and bursts through the free
liquid surface entraining with it some liquid. The equations are
solved with periodic boundary conditions at (x and y) = 0 and 6 U
whereas no-slip conditions are used at z = 0 and 12 U.

This problem has been solved by Takahira et al. [9] using the
level-set method using 60� 60� 120 grid and the surface tension
force is evaluated from geometric considerations (which requires
value of r). Here, in order to save computer time, the same
problem is solved on coarser grid of dimensions 30� 30� 60.
Maximum of 50 iterations per time step (Ds ¼ 0:001) are re-
quired to procure convergence. The reference velocity Uref , prop-
erties qa;la and surface tension coefficient r are chosen such
that
Fig. 10. Pressure contours and velocity vectors (arrow size: 1 cm = 0.13 m/s) –
sloshing in a tank.
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Fig. 12. Splashing of a water drop on a surface – pressure contours and velocity
vectors (scale: 1 cm = 2 m/s).

Fig. 11. Splashing of a water drop on a surface – dark portions represent water.
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Re ¼ qa Uref D
la

¼ 474; We ¼
qa U2

ref D
r

¼ 1:0

Fr ¼
U2

ref

g D
¼ 0:64;

qb

qa
¼ 0:001;

lb

la
¼ 0:01

s ¼ t � Uref

D

Here, computations are performed with geometric (using value
of r) as well as fluid dynamic evaluations (without using r) of sur-
face tension force [1]. In both cases, computations are extended to
dimensionless time s ¼ 1:68.

Fig. 14 shows the F = 0.5 distributions at time intervals chosen
in Ref. [9]. It is seen that predictions with both types of evaluations
are nearly identical. The predictions also accord with those ob-
tained by Takahira et al. [9] although the burst heights at large
times are somewhat smaller due to coarseness of the grid used
here. None-the-less the formation of ripples on the liquid surface
are clearly seen at s ¼ 0:4 and 0.72. Likewise, at s ¼ 1:4 and 1.68,
formation of a neck in the entrained liquid suggests that a detached
liquid drop is about to form. These fine features would become
clearer if computations are carried out on a very fine grid.

Since predictions with both types of evaluations are nearly
identical, we have computed this problem without surface tension
force ðFst ¼ 0Þ. Fig. 15 shows the computed results. It is seen that
now the burst heights are greater indicating that the absence of
surface tension force fails to minimise the interface-surface during
bursting, as expected.

Finally, Fig. 16 shows the time variation of volume error given
by

Error ¼
P

Fi;j DVi;j
P

F0
i;j DVi;j

where F0 is the initial F-distribution at t = 0. It is seen that the max-
imum error with fluid dynamic evaluation of Fst is 0.078%. The same
was found to be 0.093% (not shown here) with geometric evalua-
tion. These errors are much smaller than the one reported by Takah-
ira et al. [9] on a finer grid ð60� 60� 120Þ. In addition, Takahira et
al. also had to employ an ad hoc correction factor 1.08 during re-ini-
tialisation in their level-set method to obtain reasonably small vol-
ume error.

2.6. Merger of two rising bubbles

Following Takahira et al. [9], in this problem we consider a com-
putational box similar to the one shown in Fig. 13. The size of the
box is 4� 4� 12 U spanning �2 < x < 2,�2 < y < 2,�6 < z <6 . The
box is filled with liquid and initially (at t = 0) two spherical bubbles
(diameter D = 2) are asymmetrically placed at (0.25,0,�4.5) and
(�0.25,0,�2.3). Due to buoyancy, the two bubbles rise and due
to the associated fluid motion, the bubbles merge into one bubble
after a certain time. Both bubbles deform during this process
developing non-spherical shapes. It is of interest to study the
topography of the bubbles and the merger time. We follow speci-
fications of Takahira et al. [9]

Re ¼ qa Uref D
la

¼ 50; We ¼
qa U2

ref D
r

¼ 1:5

Fr ¼
U2

ref

g D
¼ 1:0;

qb

qa
¼ 0:001;

lb

la
¼ 0:01816

No-slip condition is used on all walls of the box and zero-gradi-
ent condition is used for qm (or F). The grid size is 30� 30� 90
whereas Takahira et al. have used 50� 50� 150. In this problem
we have used only fluid dynamic evaluation of the surface tension
force. As such, the value of r (or We) is not required. Equations
are solved with Ds ¼ 0:001 s and 50 iterations per times step are
executed. To obtain convergence, pressure correction equation
had to be under-relaxed with ap0 ¼ 0:001. Computations are con-
tinued till dimensionless time s ¼ 4 when the maximum volume
error was found to be 0.054%. Takahira et al. [9], in their level-set
method found the error to be 2% which was reduced by an ad
hoc tuning factor 1.05 in volume conservation during the re-ini-
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tialisation step in their level-set method. The present predictions
show (see Fig. 17) following features:
Fig. 14. Bubble burst – (top) geometric evaluation of fst , (bottom) fluid dynamic
evaluation of Fst .
(1) Both bubbles begin to rise simultaneously but the bottom
bubble moves up somewhat faster than the upper bubble.
Merging is initiated at s ¼ 1. In the level-set predictions of
Takahira et al. [9], merger is initiated at s ’ 5:6.

(2) After the commencement of merging process, the top bubble
develops a spherical (more ellipsoidal) cap and its underside
folds upwards providing suction to deform the lower bubble
into a pointed tail-like structure. The spherical cap structure
with upward folding of the underside has been experimen-
tally observed for a single bubble rise by Hnat and Buckmas-
ter [22]. But, no such sphericity is found in predictions of [9].
In fact, their upper bubble is much more squashed ellipsoid
than spherical nor does it show any significant upward fold-
ing of the underside.

(3) The tail-like structure of the lower bubble is seen up to s ¼ 4
while the upper bubble maintains sphericity though some-
what skewed. This type of behaviour has been obtained by
Shin and Juric [23] who used projection method with inter-
face reconstruction and evaluated curvature by geometric
method to compute rise of two asymmetrically placed bub-
bles in a 1� 1� 2 box. The parameters in their computa-
tions however were different. In terms of the present
definitions, they computed following cases3

Re ¼ 18:8 and 72:08; We ¼ 50 and 300

Fr ¼ 1:0
qb

qa
¼ 0:05

lb

la
¼ 0:04 in both cases

Their predictions of the bubble development in the two cases
show far more pronounced effect of Re than We. Note that
their Re values are comparable to that in the present compu-
tations whereas their We values are much higher (very small
r). Similarly, their density ratio is 50 times greater whereas
the viscosity ratio is greater by a factor of about 2 compared
to the values used in the present investigation. Not-with-
standing these differences, the bubble structures in the pres-
ent predictions are similar to those computed by them.4

(4) The comparisons with predictions of Shin and Juric [23]
mentioned above again suggest that Weber number is not
3 Shin and Juric [23] specified Etovos number (Eo) and Morton number (M) as

Eo ¼We
Fr
¼ 50 and 300; M ¼ We3

Re4 � Fr
¼ 1

4 Unfortunately, Shin and Juric [23] do not mention either dimensional or non-
dimensional times in their figures to comment further.



Fig. 15. Bubble burst – predictions without surface tension force ðFst ¼ 0Þ.
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an influencing parameter in bubble merger. This result
coupled with the comparisons with the experimental
observations of [22] confirm our view that Weber number
is not an independent parameter as theoretically shown in
Ref. [1].

3. Conclusions

(1) In this paper, six unsteady problems involving flow of
immiscible incompressible fluids are solved within the sin-
gle fluid formalism. The governing equations are solved
using fully implicit SIMPLE algorithm on collocated grid as
described in Ref. [1].
(2) The results from four 2D problems without surface tension
have agreed with previous numerical results and experi-
mental data from the literature. In each problem, additional
features such as smoothness of pressure contours, velocity
vectors, effect of grid size, reduced interface smearing due
to use of TVD scheme, extent of volume/mass conservation,
effect of external forces as in sloshing of a tank problem,
interface merger as in splashing of a drop problem, etc. have
been highlighted.

(3) The results from two 3D problems involving single bubble
burst and merger of two asymmetrically placed bubbles
have confirmed that fluid dynamic evaluations of surface
tension force predict development of bubble shapes that
accord with experiment as well as previous computations



Fig. 17. Merger of two rising bubbles in liquid.
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employing interface reconstruction and evaluation of sur-
face tension force based on geometric evaluation of interface
curvature. In both problems, excellent volume/mass conser-
vation has been obtained. This finding represents a major
departure from all previous publications (see [9–12] for
example) known to us.

(4) The applications presented in the paper have shown that the
formulation developed in the companion paper [1] is robust
and capable of predicting all features of the flow that have
been previously predicted using alternative methods for
solving the governing equations. Of course, to reduce com-
puter times in 3D computations, use of solution dependent
adaptive grids [24] is desirable.
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